Effects of recombinant human granulocyte colony-stimulating factor (CSF), human granulocyte macrophage-CSF, and gibbon interleukin-3 on hematopoiesis in human long-term bone marrow culture.

نویسندگان

  • L H Coutinho
  • A Will
  • J Radford
  • R Schiró
  • N G Testa
  • T M Dexter
چکیده

We have studied the effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF), hG macrophage-CSF (hGM-CSF), and gibbon interleukin-3 (gIL-3) on cell proliferation and differentiation in human long-term bone marrow culture (LTBMC). hG-CSF induced a maximal increase of 2.3-fold in both total nonadherent cells and GM cluster-forming cells, but only an increase of 1.7-fold in GM-colony-forming cell (GM-CFC) numbers, influencing mainly neutrophil differentiation. Cultures treated with hGM-CSF demonstrated a peak of 12.8-, 21- and 3.2-fold elevations in total nonadherent cells, cluster, and GM-CFC, respectively, and influenced differentiation of neutrophils, monocytes, eosinophils, and lymphocytes. Cultures treated with gIL-3 demonstrated the largest expansion in the GM-CFC population, reaching a maximum of 5.3-fold in relation to that of unstimulated controls. IL-3 treatment also increased the numbers of GM clusters and mature cells (including all myeloid cells and lymphocytes) 7.8- and 4.8-fold, respectively. Similar quantitative and qualitative changes were induced by G-CSF, GM-CSF, and IL-3 in LTBMCs of patients in remission after treatment for acute lymphoblastic leukemia or Hodgkin's lymphoma. Overall, the expansion of GM progenitor cells in cultures treated with growth factors was larger in the adherent cell layer than in the nonadherent cell fraction. In addition, hGM-CSF, gIL-3, and hG-CSF to a less extent, increased the cycling rates of GM-CFC progenitors located in the adherent layer. These results indicate that hG-CSF is a much less potent stimulus of hematopoiesis in LTBMC than the other CSFs assayed, and that the increases in cell production after treatment with G-CSF, GM-CSF, or IL-3 may be achieved by primary expansion of different cell populations within the hierarchy of the hematopoietic system. The effects of the growth factors were transient and the longevity of hematopoiesis in the cultures was not altered, suggesting that treatment with IL-3, GM-CSF, or G-CSF had not compromised the ability of primitive cells to give rise to mature cells. This indicates that the stromal microenvironment in LTBMC can override potential differentiation-inducing activities of the CSFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of Recombinant Human Granulocyte Colony-Stimulating Factor in E. coli

Bakground: Granulocyte colony-stimulating factor (G-CSF) is a cytokine that stimulates hematopoiesis and induces proliferation and differentiation of granulocyte progenitor cells as well as production of bone marrow neutrophilic granulocyte colonies.  Nowadays, human recombinant G-CSF(hr G-CSF)is used for the treatment of chemotherapy- and radiotherapy-induced neutropenia, and also in patients ...

متن کامل

Interleukin - 3 and Interleukin - la Allow Earlier Bone Marrow Progenitors To Respond to Human Colony - Stimulating

By using human bone marrow cells enriched for early progenitors by selective immunoadsorption and plated at low cell density (iO to iO cells/mL/9.6 cm2) in semisolid methylcellulose culture. we have analyzed the cooperative effects of human colony-stimulating factor 1 (CSF-1 ), granulocyte-macrophage-CSF (GM-CSF). interleukin-1 a (ILla). and gibbon as well as human recombinant IL-3 on the forma...

متن کامل

Recombinant gibbon interleukin-3 acts synergistically with recombinant human G-CSF and GM-CSF in vitro.

Recombinant gibbon interleukin-3 (IL-3) is a multilineage hematopoietic colony-stimulating factor (CSF) that recently was cloned and found to be highly homologous with human IL-3. Gibbon IL-3, as well as human granulocyte-CSF (G-CSF) and human granulocyte-macrophage CSF (GM-CSF), stimulated normal human bone marrow cells to form myeloid colonies in soft agar in a sigmoidal dose-response manner....

متن کامل

Recombinant gibbon interleukin 3 supports formation of human multilineage colonies and blast cell colonies in culture: comparison with recombinant human granulocyte-macrophage colony-stimulating factor.

The genetic sequences encoding the gibbon and human interleukin 3 (IL 3) proteins were molecularly cloned. The amino acid sequence of the mature gibbon IL 3 protein proved to share 93% homology with the corresponding human protein. We examined the effects of biosynthetic (recombinant) gibbon IL 3 on the proliferation and differentiation of an enriched population of human hematopoietic progenito...

متن کامل

Expression and Secretion of Human Granulocyte Macrophage-Colony Stimulating Factor Using Escherichia coli Enterotoxin I Signal Sequence

With the aim of the secretion of human granulocyte macrophage-colony stimulating factor (hGM-CSF) in Escherichia coli, hGM-CSF cDNA was fused in-frame next to the signal sequence of ST toxin (ST-I) of exteroxigenic E. coli, containing 53 or 19 amino acids of signal peptide. The fused STsig::hGM-CSF coding fragments were inserted into a T7-based expression plasmid. The recombinant plasmids were ...

متن کامل

Stimulation of human hematopoietic colony formation by recombinant gibbon multi-colony-stimulating factor or interleukin 3.

Recently, the gene for a novel mammalian hematopoietic growth factor homologous to murine interleukin 3 was isolated from a gibbon T cell line and expressed in monkey COS cells. The factor, termed multi-colony stimulating factor (multi-CSF) or interleukin 3, is stimulatory to human target cells. We investigated the range of enriched human bone marrow and fetal liver hematopoietic progenitors re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 75 11  شماره 

صفحات  -

تاریخ انتشار 1990